Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This perspective paper brings to light the need for comprehensive studies on the evolution of interplanetary coronal mass ejection (ICME) complexity during propagation. To date, few studies of ICME complexity exist. Here, we define ICME complexity and associated changes in complexity, describe recent works and their limitations, and outline key science questions that need to be tackled. Fundamental research on ICME complexity changes from the solar corona to 1 AU and beyond is critical to our physical understanding of the evolution and interaction of transients in the inner heliosphere. Furthermore, a comprehensive understanding of such changes is required to understand the space weather impact of ICMEs at different heliospheric locations and to improve on predictive space weather models.more » « less
-
Abstract Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.more » « less
An official website of the United States government
